期刊专题

10.3724/SP.J.1089.2018.17068

多尺度输入3D卷积融合双流模型的行为识别方法

引用
基于视频的行为识别技术在计算机视觉领域有广泛的应用.针对当前存在的网络模型不能有效结合视频数据中的时空信息,并且缺乏对不同尺度数据之间的融合信息进行考虑等问题,提出一种结合双流网络以及3D卷积神经网络的多尺度输入3D卷积融合双流模型.首先利用2D残差网以及多尺度输入3D卷积融合网络获取视频中的时空维度信息;然后将2层网络得到的实验结果进行决策相加,有效地提升网络对视频中时空特征提取的能力;最后通过在多尺度输入3D卷积融合网络对不同尺度的数据进行不同策略的融合,提高了网络对不同尺度数据的泛化能力.实验结果表明,文中模型在数据集UCF-101以及HMDB-51的识别准确率分别为90.5%与66.3%;相比于其他方法,该模型能取得更高的识别精度,体现出文中方法的优越性与鲁棒性.

行为识别、3D卷积、深度学习、多尺度输入、信息融合

30

TP391.41(计算技术、计算机技术)

国家自然科学基金61503192, 61773377;江苏省自然科学基金BK20161533

2018-11-28(万方平台首次上网日期,不代表论文的发表时间)

共10页

2074-2083

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

30

2018,30(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn