期刊专题

10.3724/SP.J.1089.2018.16944

PNET:像素级台标识别网络

引用
台标识别是典型的细微目标识别问题,针对台标区域小、信息量低,且镂空、半透明台标极易受到画面背景影响的难题,提出一个基于端到端全卷积网络的像素级台标识别网络——PNET.首先构建一个像素级标注的台标数据集,通过视频抽帧和图像预处理获得台标图像集,并提出一种逐图像的像素级半自动标注方法获得二值标签图像集;然后提出一个像素级台标识别网络,在典型分类网络AlexNet,VGG的基础上,通过微调,将分类网络在分类任务中学习到的网络参数转换为像素级台标识别网络在台标分割任务中的所需的网络参数;最后引入跨层架构,融合来自网络深层的全局信息和浅层的局部信息.实验结果表明PNET实现了准确的像素级分割,准确率高达98.3%,在NVIDIA Tesla K80上单幅图像识别时间不超过1.5 s.

视频分类、台标识别、全卷积网络、像素级半自动标注、跨层架构

30

TP391.41(计算技术、计算机技术)

国家重点研发计划2016YFB0801203;国家自然科学基金61672495,61273247

2018-11-09(万方平台首次上网日期,不代表论文的发表时间)

共12页

1878-1889

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

30

2018,30(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn