期刊专题

10.3724/SP.J.1089.2018.16849

基于深度学习的产品意象识别

引用
为了满足用户对产品的情感化需求,提出一种基于深度学习的产品意象识别方法.该方法通过语义差异法获得产品意象数据集,在此基础上,使用卷积神经网络VGGNet进行训练,建立产品意象深度模型.以典型的椅子产品为例对文中方法进行验证,训练好的产品意象深度模型识别准确率最高可达95.3%.为了进一步证明该方法的优越性,将其分别与以支持向量机(SVM)为代表的传统方法和浅层的卷积神经网络CaffeNet进行对比实验,结果表明,在识别准确率上该方法比SVM提高了约5%,比CaffeNet提升了4%~10%.此外,为了解释深度学习的识别过程,对卷积特征进行了可视化,展现了特征映射从底层到高层的抽象过程.

产品意象、深度学习、自学习特征、VGGNet、卷积操作

30

TP391.41(计算技术、计算机技术)

浙江省自然科学基金LY18E050014;国家自然科学基金61672451

2018-09-14(万方平台首次上网日期,不代表论文的发表时间)

共7页

1778-1784

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

30

2018,30(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn