基于轨迹和兴趣点数据的城市功能区动态识别与时变规律可视分析
目前,多数城市功能区识别方法仅依据路网和土地利用类型进行功能区的划分与识别,无法反映功能区范围及功能性随人类活动的动态变化.为此,提出基于轨迹数据挖掘与兴趣点语义分析的城市功能区识别与时空特征分析方法.通过考虑车辆行驶状况与区域功能的相关性,对特征轨迹点进行自适应密度聚类,并基于聚类中心利用Voronoi图合理划分功能区范围.为了有效地评价区域的复合功能性,利用潜在狄利克雷分布(latent Dirichlet alloca-tion,LDA)模型对区域内兴趣点的类别信息挖掘主题词并计算相应的概率,在此基础上提出功能性强弱量化计算方法.基于轨迹数据的时变特性,构建交互式可视分析系统UFAVIS(urban functional areas visualization),进一步发掘人类活动对功能区时空模式的影响.利用结合时空特征分析的功能区识别方法对北京市真实数据进行了实验验证和具体案例分析,结果表明,UFAVIS能够准确识别区域的复合功能性,并发现功能区随人类活动的时空变化规律,为城市规划和政策制定提供依据.
轨迹数据、功能区识别、时序分析、Voronoi图、潜在Dirichlet分布、可视分析
30
TP391.41(计算技术、计算机技术)
国家自然科学基金面上项目41671379
2018-09-14(万方平台首次上网日期,不代表论文的发表时间)
共13页
1728-1740