期刊专题

10.3724/SP.J.1089.2018.16789

CT影像识别的卷积神经网络模型

引用
针对传统分类方法分割精度低、特征提取耗时等问题,构建一个适用于CT肺结节良恶性分类的卷积神经网络模型.首先确定网络深度、卷积核数目和卷积核大小等参数,构建卷积神经网络初始模型;然后选择激活函数类型、学习率和学习率衰减策略等训练参数;最后提出对感兴趣区域划分局部子区域的方式增强样本进行训练.在LIDC-IDRI数据集上进行实验的结果表明,准确率、特异性、敏感性及AUC值分别达到92.50%,0.91,0.94和0.93;对恶性结节的识别能力明显优于其他网络模型.

卷积神经网络、肺部CT、图像分类、局部子区域

30

TP391.41(计算技术、计算机技术)

国家自然科学基金61373100;山西省回国留学人员科研资助项目2016-038

2018-08-27(万方平台首次上网日期,不代表论文的发表时间)

共6页

1530-1535

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

30

2018,30(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn