期刊专题

10.3724/SP.J.1089.2018.16781

联合语义部件的鸟类图像细粒度识别

引用
由于子类别的高度相似性引起的类间微小差异,以及姿态、尺度和旋转方面的类内变化,使得细粒度图像识别成为一个具有挑战性的计算机视觉问题.为了对鸟类图像进行细粒度识别,提出一种联合语义部件的深度卷积神经网络模型.该模型由2个子网络组成:一个是语义部件检测子网,使用深度残差网络对鸟类图像语义部件进行精确定位;另一个是分类子网,使用三路深度残差网络对检测子网检测到的语义部件进行联合分类.收集了一个新的鸟类图像数据集YUB-200-2017,用于鸟类图像细粒度识别实验.结果表明,在YUB-200-2017和CUB-200-2011数据集上,文中方法具有较高的语义部件检测精度和识别准确率.

细粒度图像识别、语义部件检测、深度学习、卷积神经网络

30

TP391.41(计算技术、计算机技术)

国家自然科学基金61662072, 61540062;云南省教育厅基金2015Y285, 2016CYH03;云南省应用基础研究项目2014FA021

2018-08-27(万方平台首次上网日期,不代表论文的发表时间)

共8页

1522-1529

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

30

2018,30(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn