期刊专题

10.3724/SP.J.1089.2018.16778

结合域变换和轮廓检测的显著性目标检测

引用
针对多层显著性图融合过程中产生的显著目标边缘模糊、亮暗不均匀等问题,提出一种基于域变换和轮廓检测的显著性检测方法.首先选取判别式区域特征融合方法中的3层显著性图融合得到初始显著性图;然后利用卷积神经网络计算图像显著目标外部轮廓;最后使用域变换将第1步得到的初始显著性图和第2步得到的显著目标轮廓图融合.利用显著目标轮廓图来约束初始显著性图,对多层显著性图融合产生的显著目标边缘模糊区域进行滤除,并将初始显著性图中检测缺失的区域补充完整,得到最终的显著性检测结果.在3个公开数据集上进行实验的结果表明,该方法可以得到边缘清晰、亮暗均匀的显著性图,且准确率和召回率、F-measure,ROC以及AUC等指标均优于其他8种传统显著性检测方法.

显著性目标、卷积神经网络、轮廓检测、域变换融合

30

TP391.41(计算技术、计算机技术)

国家自然科学基金61379106, 61379082, 61227802;山东省自然科学基金ZR2013FM036,ZR2015FM011

2018-08-27(万方平台首次上网日期,不代表论文的发表时间)

共9页

1457-1465

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

30

2018,30(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn