组合范数正则化稀疏编码和自适应加权残差的鲁棒跟踪
针对基于稀疏表示的目标跟踪中编码系数采用L0或L1范数正则, 易造成NP难优化或预估偏差增大等问题,提出一种基于贝叶斯框架下的组合范数正则化稀疏编码和自适应加权残差的鲁棒跟踪算法. 首先提出组合范数正则化稀疏编码, 对目标函数编码系数同时进行 L0和 L1正则, 根据其贡献程度赋予不同的权值, 以增强目标外观模型的鲁棒性; 其次在目标函数中引入残差项, 赋予其自适应权重来缓解噪声、腐蚀和光照等离群子干扰; 最后求解目标函数最小化所涉及的非凸病态问题, 在加速近邻梯度算法框架下提出一种广义阈值法来迭代求解最优值. 采用大量具有挑战性的序列进行实验的结果表明, 与现阶段其他主流算法相比, 该算法具有更好的鲁棒性.
组合范数正则编码、自适应权重、目标跟踪、贝叶斯框架
30
TP391.41(计算技术、计算机技术)
国家自然科学基金61362030,61201429;中国博士后科学基金2015M581720,2016M600360;科技援疆专项计划2017E0279
2018-05-11(万方平台首次上网日期,不代表论文的发表时间)
共8页
634-641