期刊专题

10.3724/SP.J.1089.2018.16422

基于两阶段支持向量回归的快速噪声水平估计算法

引用
虽然基于主成分分析的噪声水平评估算法的预测准确性比较高,但是以迭代方式从原生图块集合中筛选同质图块子集的过程导致其执行效率比较低.为提高现有算法的执行效率,提出一种基于两阶段支持向量机回归的快速噪声水平估计改进算法.首先依据原生图块协方差矩阵的前若干个特征值与噪声水平值的强相关性,利用支持向量机回归技术训练粗精度的预测模型,大致估计出图像中的噪声水平范围;然后根据初步估计的结果,使用专门针对低、中、高噪声水平训练的精细预测模型获得最终的噪声水平估计值.大量实验结果表明,该算法可以在不降低太多预测准确性的前提下,大幅度地提高执行效率,用它作为各类图像处理算法的前置预处理模块,较其他同类算法具有显著的综合优势.

图像降噪、噪声水平估计、两阶段预测、支持向量回归、原生图块、主成分分析

30

TP391.41(计算技术、计算机技术)

国家自然科学基金61662044,61163023,51765042,81501560;江西省自然科学基金20171BAB202017

2018-06-04(万方平台首次上网日期,不代表论文的发表时间)

共12页

447-458

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

30

2018,30(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn