期刊专题

10.3724/SP.J.1089.2018.16407

融合候选区域提取与SSAE深度特征学习的心脏MR图像左心室检测

引用
左心室检测在计算机辅助心脏MR图像诊断方面具有重要价值,针对由于成像质量、部分容积效应、目标复杂多变等因素影响,导致左心室自动检测准确度较低的问题,提出一种融合候选区域提取与栈式稀疏自编码器(SSAE)深度特征学习的心脏MR图像左心室检测方法.在候选区域提取阶段,先用超像素算法产生初始区域,然后对SSAE学习到的深度特征采用层次聚类算法生成候选区域;在检测阶段,先使用SSAE提取候选区域的深度特征,然后训练SVM分类器对候选区域进行分类,并使用难分负样本挖掘算法对模型进行调节.对心脏图谱数据集左心室目标检测的实验结果表明,相对于手工特征及基于候选区域等方法,该方法取得了有竞争力的检测精度.

栈式稀疏自编码器、左心室目标检测、深度特征学习、心脏MR图像、SVM分类器

30

TP391.41(计算技术、计算机技术)

国家自然科学基金61190122;重庆市基础与前沿研究计划cstc2016jcyjA0317;中央高校基本业务费项目106112015CDJXY120003

2018-06-04(万方平台首次上网日期,不代表论文的发表时间)

共12页

424-435

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

30

2018,30(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn