期刊专题

10.3724/SP.J.1089.2018.16919

基于深度学习的计算机辅助肺癌诊断方法

引用
癌症,是21世纪死亡率较高的疾病之一,而肺癌在所有癌症发病率及死亡率中均占首位.近年来,随着大数据与人工智能的兴起,基于深度学习的肺癌辅助诊断逐渐成为热门的研究课题.计算机辅助肺癌诊断技术主要是对医学仪器成像得到的肺部影像数据进行处理分析的过程,文中将这类过程总结为4个步骤:医学影像数据预处理、肺实质分割、肺结节检测与分割,以及病变诊断.由于深度学习技术对于训练数据的数量需求较高,而目前领域内公开较多的数据主要是肺部CT图像的结节数据,因此深度学习上对于肺癌辅助诊断的工作主要是肺内实质部分分割、肺结节检测分割以及病变分析的工作.文中对于面向肺癌辅助诊断的传统医学影像处理方法进行了简单介绍,并对前沿的深度学习医学影像处理方法进行了综述.

肺癌、深度学习、医学影像处理

30

TP391.41(计算技术、计算机技术)

上海申康医院发展中心临床科技创新项目SHDC12016106

2018-02-01(万方平台首次上网日期,不代表论文的发表时间)

共10页

90-99

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

30

2018,30(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn