期刊专题

10.3969/j.issn.1003-9775.2017.11.005

监督式多模态图像表征学习

引用
通过结合多模态特征与类别标签信息,提出一种基于监督式多模态词典学习的图像表征方法.首先使用纹理、颜色、形状和结构4种模态的视觉特征,以学习包含"共享+特有"信息的稀疏特征来描述目标的视觉特性;然后通过拉普拉斯正则化项使学习到的稀疏特征能够反映类别标签中的语义信息,以增强所学习特征的辨识力.通过图像分类进行实验的结果表明,该方法优于单模态特征及其他基准多模态特征学习方法.

多模态词典学习、监督学习、图像表征

29

TP181(自动化基础理论)

国家自然科学基金61379106;中央高校基本科研业务费专项资金13CX06007A, 14CX06010A, 14CX06012A;山东省自然科学基金ZR2009GL014, ZR2013FM036, ZR2015FM011

2017-12-04(万方平台首次上网日期,不代表论文的发表时间)

共8页

1997-2004

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

29

2017,29(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn