期刊专题

结合极限学习机的高光谱影像聚类算法

引用
针对训练样本无先验别知识指导的高光谱影像聚类问题,提出一种结合极限学习机的高光谱影像非监督分块聚类算法.首先对影像进行预聚类,采用分块策略选取训练样本;然后在传统谱聚类算法的基础上引入极限学习机预测机制,利用训练样本求解极限学习机的最优输出矩阵;最后通过极限学习机对整幅高光谱影像进行特征映射,进而在嵌入空间实现聚类.采用6组高光谱影像进行实验,与K均值和谱聚类等传统算法的聚类精度对比的结果表明,该算法能够克服谱聚类算法内存空间的瓶颈问题,实现大尺寸高光谱影像的聚类,并且在一定程度上提高了聚类精度.

非监督聚类、谱聚类、极限学习机、高光谱影像

29

TP237(自动化技术及设备)

国家自然科学基金;国家重点实验室开放基金;国家重点实验室开放基金;河南省科技攻关计划;信息工程大学自主科研课题

2017-10-20(万方平台首次上网日期,不代表论文的发表时间)

共9页

1416-1424

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

29

2017,29(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn