期刊专题

10.3969/j.issn.1003-9775.2017.06.014

基于自回归模型的动态表情识别

引用
采用几何信息和纹理信息融合的混合特征,基于自回归(AR)模型,提出一种基于线段的相似度判决方法实现动态表情识别.首先在6种基本表情的图像序列训练集上进行训练得到6种AR模型,然后给定测试表情序列,对每一个测试序列通过6种AR模型生成6种预测序列,接着比较每种预测序列与实际给定序列的相似性,最终根据相似性判断所给序列的表情类别.为了更好地比较预测序列与给定序列的相似性,提出了一种基于线段的相似度判决方法.基于Cohn-Kanade+人脸表情库进行实验结果表明,该方法在动态表情识别上取得了良好的效果.

动态表情识别、几何特征、纹理特征、二阶自回归模型

29

TP391.41(计算技术、计算机技术)

国家社会科学基金16BSH107

2017-06-30(万方平台首次上网日期,不代表论文的发表时间)

共8页

1085-1092

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

29

2017,29(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn