10.3969/j.issn.1003-9775.2017.04.025
泰勒级数准则函数鲁棒性点云配准算法
为减小离群点对点云配准精确度的影响,避免点云配准迭代计算过程中陷入局部最小值,基于鲁棒性准则函数点云配准框架提出泰勒级数准则函数鲁棒性点云配准算法.该方法分为泰勒级数准则函数的提出和配准初始值的确定2个方面.泰勒级数准则函数中,考虑各准则函数限制离群点影响来提高配准精确度的内因,对权值递减速率较合理的Cauchy准则函数进行泰勒级数展开,构造泰勒级数准则函数解决离群值问题;配准初始值的确定中,通过计算待匹配点云数据集的重心,根据重心信息确定平移向量,解决局部最小值问题.数值实验结果表明,泰勒级数准则函数配准误差较最小二乘法、Huber、Tukey和Cauchy准则函数更小,在配准精度上有了较大的提高,并且误差值稳定收敛;引入插值算法对点云数据进行处理,对后续的配准精度有一定的改善.
点云配准、泰勒级数、准则函数、离群点
29
TP391.41(计算技术、计算机技术)
国家自然科学基金61272237, 61273243;水电工程智能视觉监测湖北省重点实验室开放基金2014KLA04, 2014KLA12;江苏省三维打印装备与制造重点实验室开放基金L2014071304;湖北省自然科学基金创新群体2015CFA025;湖北省教育厅科学技术研究计划重点项目D20151204
2017-05-11(万方平台首次上网日期,不代表论文的发表时间)
共7页
784-790