期刊专题

10.3969/j.issn.1003-9775.2017.02.004

基于边特征的学习完全图匹配模型

引用
传统的线性学习图匹配模型具有易于训练和能够求解最优匹配的优点,但是没有考虑图的结构信息,从而限制了其匹配精度.为克服这一缺点,提出一种新的线性学习图匹配模型——基于边特征的学习完全图匹配模型(ELC-GM),其中,边特征由边上采样点的特征描述,而采样点的特征是通过一种包含旋转不变因子的形状上下文特征描述的.ELC-GM先对模型进行有监督的训练,再用Kuhn-Munkres算法求解边匹配,进而用Hungarian解码算法将边匹配转换为点匹配.实验结果表明,ELC-GM的训练效果稳定,匹配精度即使在形变和噪声条件下也能得到一定提升.

图匹配、边特征、监督、旋转、Hungarian解码

29

TP391.4(计算技术、计算机技术)

国家自然科学基金61175004;中国博士后科学基金资助项目2015M580952;高等学校博士学科点专项科研基金20121103110029;北京市博士后工作经费资助项目2016ZZ-24

2017-05-02(万方平台首次上网日期,不代表论文的发表时间)

共8页

236-243

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

29

2017,29(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn