期刊专题

10.3969/j.issn.1003-9775.2016.04.011

结合马尔可夫高斯模型的双邻域模糊聚类分割算法

引用
针对传统模糊 C 均值(FCM)算法采用欧几里得测度描述像素与聚类间的非相似性对噪声和异常值敏感的问题,提出基于马尔可夫-高斯模型、且包含特征场和标号场双邻域的模糊聚类分割算法。首先根据马尔可夫模型能够结合邻域像素作用的特点在标号场上建立与邻域像素相关联的能量函数,确保相同邻域系统内的像素属于相同类别的概率较之不在相同邻域系统内的像素更大,最终实现标号场邻域系统的建立;而后在特征场上利用 Gaussian 模型描述像素与聚类间的非相似性测度,并结合相邻像素对非相似性的影响构建特征场邻域模型,即利用中心像素和邻域像素特征与聚类均值矢量的差异代替传统像素特征与均值矢量的差异构建 Gaussian 模型;最后结合标号场和特征场邻域构建包含双邻域的模糊聚类分割模型,实现高精度模糊聚类分割。通过与现有多种典型FCM算法对模拟影像和真实彩色影像的实验以及分割结果的对比分析,证明了文中算法的有效性。

模糊C均值算法、影像分割、邻域系统、马尔可夫高斯模型

28

TP791(遥感技术)

国家自然科学基金41301479,41271435

2016-05-19(万方平台首次上网日期,不代表论文的发表时间)

共9页

614-622

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

28

2016,28(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn