采用多组单应约束和马尔可夫随机场的运动目标检测算法
针对现有动态背景下目标检测算法的局限性,提出一种基于多组单应约束和马尔可夫随机场的运动目标检测算法。该算法以视频序列多帧跟踪的运动轨迹为基础,通过轨迹分离和像素标记2个阶段实现运动目标的检测:在轨迹分离阶段,利用多组单应约束对视频序列的背景运动进行建模,并基于该约束通过累积确认的策略实现背景轨迹和前景轨迹的准确分离;在像素标记阶段,以超像素为节点建立时空马尔可夫随机场模型,将轨迹分离信息以及超像素的时空邻域关系统一建模在马尔可夫随机场的能量函数中,并通过最小化能量函数得到每个像素的前背景标记结果。与现有基于运动轨迹的方法相比,文中算法不需要仿射摄像机模型的假设,有效地解决了运动轨迹等长带来的轨迹点区域缺失问题,并可同时处理静态背景和动态背景2种类型的视频;在多个公开数据集的测试结果表明,该算法在轨迹分离准确性、轨迹点密度以及像素标记准确率等方面均优于现有方法。
运动目标检测、运动轨迹、多组单应约束、轨迹分离、马尔可夫随机场模型、像素标记
TP391(计算技术、计算机技术)
国家自然科学基金61021063,61225008
2015-04-27(万方平台首次上网日期,不代表论文的发表时间)
共12页
621-632