非均匀三次B样条曲线插值的Jacobi-PIA算法
为了求解非均匀三次B样条曲线插值问题,基于解线性方程组的Jacobi迭代方法提出一种渐进迭代插值算法——Jacobi-PIA算法.该算法以待插值点为初始控制多边形得到第0层的三次B样条曲线,递归地求得插值给定点集的三次B样条曲线;在每个迭代过程中,定义待插值点与第k层的三次B样条曲线上对应点的差向量乘以该点对应的B样条系数的倒数为偏移向量,第k层的控制顶点加上对应的偏移向量得到第k+1层的三次B样条曲线的控制顶点.由于Jacobi-PIA算法在更新控制顶点时减少了一个减法运算,因而运算量更少.理论分析表明该算法是收敛的.数值算例结果表明,Jacobi-PIA算法的收敛速度优于经典的渐进迭代插值算法,与最优权因子对应的带权渐进迭代插值算法基本相同.
迭代算法、曲线插值、非均匀三次B样条
27
O245(计算数学)
国家自然科学基金61003194,61370166,61379072;浙江大学CAD&CG国家重点实验室开放课题A1304
2015-04-10(万方平台首次上网日期,不代表论文的发表时间)
共7页
485-491