期刊专题

基于可视界面的社交媒体搜索系统

引用
针对社交媒体数据搜索中存在的消息文本短、不利于构建索引,排名列表形式单一、无法展现社交媒体数据的整体结构的问题,通过挖掘社交媒体数据隐含的多重语义特征,强化索引结构,提出基于可视分析方法的搜索系统,采用交互式界面可视化表达语义特征,使得搜索更准确.以推特数据为研究对象,基于时间上的语义相关性,首先抽取数据中隐含的话题和命名实体集合;在此基础上构建层次语义图模型,简化数据的内在语义关系,同时为可视化搜索提供必要的索引结构;用户浏览数据时,分裂环形图表示数据的多重语义特征,系统提供多种交互方式方便用户探索更多信息.案例分析结果表明,相对于连线和气泡图特征模式,分裂环形图更加明显,方便用户寻找关注的消息;用户调查结果反映出该方法较传统的搜索方式更容易找到想要的结果.

搜索系统、社交媒体数据、层次语义图、多重语义特征

27

TP391.72(计算技术、计算机技术)

国家自然科学基金重点项目61232012;国家自然科学基金61202279;浙江省自然科学基金LR13F020001;教育部博士点基金20120101110134;中央高校基本科研业务费专项资金2013QNA5010

2015-04-10(万方平台首次上网日期,不代表论文的发表时间)

共9页

460-468

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

27

2015,27(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn