期刊专题

多模型融合的多标签图像自动标注

引用
为了实现更为准确的复杂语义内容图像理解,提出一种融合多模型的多标签图像自动标注方法.该方法采用3个不同的模型分别对图像语义内容进行分析:在前景语义概念检测中,提出一种基于多特征的视觉显著性分析方法,并利用多Nystr(o)m近似核对前景对象的语义进行判别分析;对于背景概念检测,提出一种区域语义分析的方法;通过构造基于潜语义分析的语义相关矩阵来消除标注错误的标签.根据前景和背景的语义和视觉特征,分别采用不同的模型提取前景和背景标注词,而语义相关分析能够有效地提高标注的准确性.实验结果表明,该多模型融合标注方法在图像的深层语义分析以及多标签标注方面具有较好的效果;与同类算法相比,能够有效地减少错误标注的标签数目,得到更加准确的标注结果.

图像标注、多模型、MNKDA、区域语义分析、语义相关分析

26

TP391(计算技术、计算机技术)

国家自然科学基金61370174;上海市自然科学基金11ZR1409600;浙江大学CAD&CG国家重点实验室开放课题A1213

2014-04-02(万方平台首次上网日期,不代表论文的发表时间)

共7页

472-478

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

26

2014,26(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn