模糊图像盲复原的鲁棒自适应滤波算法
运动模糊图像盲复原是图像处理中的关键问题之一.由于模糊信息估计的复杂性以及图像噪声的影响,现有算法往往难以做到高质量的图像复原.为改善模糊信息估计的效果,提出一种基于自适应线性滤波的改进算法.首先在原有模糊信息估计过程中引入自适应动态线性滤波以抑制噪声影响,达到改善模糊信息估计结果的目的,同时可以起到调整优化目标的作用,使原问题变得较容易求解,从而获得高质量的模糊信息估计;在此基础上提出了改进的重定权值split Bregman迭代法,用于获得模糊信息后求解原始图像的过程中,进一步改善模糊图像复原的效果.实验结果表明,与3种现有的模糊图像盲复原算法相比,该算法能更准确地估计模糊信息,对多数图像复原任务具有更好的鲁棒性,能有效地用于运动模糊图像复原任务.
图像盲复原、正则化方法、L1范数优化、线性滤波、split Bregman迭代
26
TP391(计算技术、计算机技术)
国家自然科学基金61233011,90820306
2014-04-02(万方平台首次上网日期,不代表论文的发表时间)
共8页
457-464