改进视觉背景提取模型的运动目标检测算法
针对视觉背景提取模型对动态场景适应性不强、运动目标检测精度低等问题,提出一种改进的视觉背景模型算法.在模型建立与初始化阶段,采用按序抽取的方法将像素点本身信息加入到背景模型中,形成邻域背景模型,降低复杂场景对模型的影响;在前景检测阶段,结合像素点的空间邻域信息自适应地获取分割阈值,减少各类复杂场景对检测结果的干扰,提高运动目标检测的精度;在背景更新阶段,根据场景复杂度动态地调整模型的更新周期与更新方式,使得模型能够有效地消除虚影与背景噪声的影响,增强模型对复杂场景的适应性与鲁棒性.与典型算法进行对比的实验结果表明,该算法具备较高的检测精度,适用于动态场景中的运动目标检测.
视觉背景提取、目标检测、自适应阈值、动态更新
26
TP391(计算技术、计算机技术)
2014-03-18(万方平台首次上网日期,不代表论文的发表时间)
共9页
232-240