期刊专题

语义级深度迁移的2D转3D算法

引用
海量视频数据推动了基于数据驱动的单目图像深度估计研究.针对现有方法存在不同对象深度分配层次感不够的问题,在相似场景具有相似深度的假设前提下,提出一种基于语义级分割和深度迁移的单目图像2D转3D的方法.首先使用分割迁移模型将输入图像的像素进行语义级分类;然后通过语义级分类结果对场景匹配进行约束;再次利用SIFT流建立输入图像和匹配图像间像素级对应关系,并由此将匹配图像的深度迁移到输入图像上;最后通过语义级分割约束的最优化深度融合模型为不同对象区域分配深度值.Make3D测试数据的实验结果表明,该方法估计的深度质量比现有深度迁移方法更高,与最优化融合深度迁移算法相比,平均对数误差和平均相对误差分别降低0.03和0.02个点.

数据驱动、深度估计、深度迁移、语义分割、2D转3D

26

TP391.4(计算技术、计算机技术)

国家自然科学基金61071173;浙江省自然科学基金LY12F01001,Y1100253,Y1110086;宁波市自然科学基金2012A610043,2012A610111,2012A610186

2014-03-19(万方平台首次上网日期,不代表论文的发表时间)

共9页

72-80

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

26

2014,26(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn