期刊专题

10.3969/j.issn.1003-9775.2013.02.007

基于Fisher准则的多指静脉融合

引用
针对单特征手指静脉识别中识别率难以继续提高的技术瓶颈,采用多特征融合技术不仅可以提高识别率,而且可以降低误识率.为此提出一种基于Fisher准则的手指静脉融合算法.首先对手指静脉图像进行特征点提取,分别计算待匹配图像特征点与注册图像特征点的正向平均豪斯道夫距离(FMHD)和反向平均豪斯道夫距离(RMHD),然后基于Fisher准则确定FMHD和RMHD的融合参数,将融合得到的豪斯道夫距离作为新的匹配分数;在上述算法的基础上,将得到的食指、中指和无名指3根手指静脉的匹配分数进行融合,以进一步提高手指静脉的识别率.实验结果表明,与通常采用的FMHD相比,采用融合后的豪斯道夫距离的误识率有明显降低;而采用三指静脉融合后,误识率由单个手指的1.95%降低到0.27%.

生物特征融合、手指静脉识别、Fisher准则、正向平均豪斯道夫距离、反向平均豪斯道夫距离

25

TP391.4(计算技术、计算机技术)

国家自然科学基金60773015,61201158;北京市自然科学基金4102051

2013-04-18(万方平台首次上网日期,不代表论文的发表时间)

共6页

183-188

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

25

2013,25(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn