期刊专题

医学噪声图像分割的分解与活动轮廓方法

引用
医学噪声图像的分割是一件非常困难的事情,为了同时进行噪声去除和图像分割,提出一种基于分解的图像活动轮廓分割模型.该模型是G空间图像分解模型和边缘、区域相结合的活动轮廓模型集成的一个变分泛函,由于模型直接求解困难,把它分裂成2个泛函极值——图像分解部分和图像分割部分.其中,图像分解部分是在G空间的泛函极值,用第二代曲波变换域的阈值收缩求解;分割部分是变分水平集泛函极值,其Euler方程为非线性偏微分方程,可用梯度下降流求解.实验结果表明,文中模型不但可对噪声图像去噪,而且在相同的实验条件下分割效果优于Chan-Vese模型、Snake模型、Level-set模型和ASM;不仅提高了图像的质量,还能较好地分割出目标部分.

图像分割、活动轮廓、图像分解、阈值收缩、梯度下降流

23

TP391(计算技术、计算机技术)

国家“九七三”重点基础研究发展计划项目2010CB933903

2012-03-05(万方平台首次上网日期,不代表论文的发表时间)

共8页

1882-1889

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

23

2011,23(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn