基于LBP的尺度不变特征的描述和匹配算法
针对尺度不变特征变换(SIFT)算法计算复杂度高和匹配速度慢的难题,提出一种新的基于局部二进制模式(LBP)的尺度不变特征变换算法.首先采用高斯差分尺度空间检测局部极大值,利用圆形邻域统计梯度方向直方图来确定特征点的主方向,再通过坐标轴旋转避免图像旋转的计算代价;然后运用改进后的LBP算子求取特征点邻域的纹理信息,得到132比特的特征点描述子,有效地降低了描述子的计算复杂度;最后运用逻辑与运算对描述子进行特征点匹配.图像匹配实验结果表明,该算法具有尺度不变性、旋转不变性、仿射不变性和光照不变性等优良特性,在保证匹配正确率与SIFT和CS-LBP算法基本一致的情况下,运算速度优于以上2种算法,其中光照不变性明显优于SIFT算法.
图像匹配、局部特征、局部二进制模式、尺度不变特征变换、特征描述
23
TP391(计算技术、计算机技术)
国家自然科学基金60772151,61075025
2012-02-21(万方平台首次上网日期,不代表论文的发表时间)
共6页
1758-1763