期刊专题

基于Haar特征的Turbo-Boost表情识别算法

引用
针对AdaBoost在使用Haar特征时的局限性,提出了Turbo-Boost算法.该算法经过两轮AdaBoost迭代,先从原始的Haar特征空间中筛选出F维主要特征子空间,再从中训练T>F个弱分类器,以进行最终的表情识别.在CAS-PEAL-R1表情库上的10折交叉验证结果表明,Turbo-Boost算法可显著提升识别性能,对微笑、皱眉、惊讶、张口和闭眼5类表情的总体识别准确率达到了93.6%.此外,该算法的识别速度快,可满足实时识别的需要.

表情识别、Haar特征、AdaBoost、Turbo-Boost

23

TP391(计算技术、计算机技术)

国家242信息安全计划项目2005C48

2012-01-14(万方平台首次上网日期,不代表论文的发表时间)

共6页

1442-1446,1454

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

23

2011,23(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn