期刊专题

混沌PSO最小一乘空时预测的红外小目标检测

引用
针对红外图像中背景与小目标的特点,提出一种基于混沌粒子群优化(PSO)最小一乘空时背景预测的红外小目标检测方法.首先建立最小一乘准则空时背景预测模型,根据最小一乘估计的性质,提出应用混沌PSO算法解决最小一乘估计中极值的选取问题,并用该模型预测红外图像中的背景,从原始图像中减去预测图像得到残差图像;然后提出了基于混沌PSO的二维直方图斜分模糊最大熵阈值选取方法,由此分割所得残差图像即可将小目标检测出来.将文中方法与基于最小二乘背景预测的红外小目标检测方法进行了比较实验,实验结果表明,该方法具有更高的检测概率和信噪比增益,优于基于最小二乘背景预测的红外小目标检测方法.

红外小目标检测、空时背景预测、最小一乘估计、混沌粒子群优化、模糊最大熵阈值分割、二维直方图斜分

23

TN911.73

国家自然科学基金60872065;航空科学基金20105152026;南京大学计算机软件新技术国家重点实验室开放基金KFKT2010B17

2011-07-21(万方平台首次上网日期,不代表论文的发表时间)

共6页

909-914

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

23

2011,23(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn