期刊专题

Kriging模型的增量构造及其在全局优化中的应用

引用
为了解决高效全局优化算法(EGO)中迭代次数增多时构建Kriging模型速度过慢,以及对于某些响应值变化范围较大的目标函数出现过早收敛的问题,提出了增量Kriging方法和基于此方法的改进EGO算法.增量方法利用已经得到的关联矩阵的逆矩阵和新增的数据点忽略关联系数优化的过程,直接进行一系列矩阵运算,得到新关联矩阵的逆矩阵,进而得到更新后的预测模型.改进的EGO算法使用上述的增量方法和更加严谨的停止规则,包括改善期望、自变量和响应值的停止准则.最后使用标准函数分别对增量方法和EGO算法进行测试,结果表明,增量方法可在损失少量精度的情况下大大缩短模型更新的时间,改进的EGO算法具有更高的效率和稳定性.

Kriging模型、高效全局优化、增量Kriging方法、改善期望、停止准则

23

TP391(计算技术、计算机技术)

国家自然科学基金50775084;国家"高档数控机床与基础制造装备"科技重大专项2009ZX040001015

2011-07-19(万方平台首次上网日期,不代表论文的发表时间)

共7页

649-655

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

23

2011,23(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn