采用上下文金字塔特征的场景分类
为了能有效地表述场景图像的语义特性,提出一种基于图像块上下文信息的场景图像分类框架.首先用规则网格将图像分块,并提取每个块的SIFT特征;然后用K均值算法对训练图像的块特征聚类,形成块类型的码本;再根据此码本对图像块进行量化,得到图像的视觉词汇表示,形成视觉词汇图,并在其上建立2类视觉词汇模型:相邻共现的不同视觉词汇对模型和连续共现的相同视觉词汇群模型;最后应用空间金字塔匹配建立视觉词汇的上下文金字塔特征,并采用SVM分类器进行分类.实验结果证明,在常用的场景图像库上,文中方法比已有的典型方法具有更好的场景分类性能.
场景分类、上下文信息、空间金字塔匹配、图像块
22
TP391.4(计算技术、计算机技术)
国家自然科学基金40971245
2011-05-16(万方平台首次上网日期,不代表论文的发表时间)
共8页
1366-1373