期刊专题

GPGPU性能模型及应用实例分析

引用
现代图形处理器(GPU)的高性能吸引了大量非图形应用,为了有效地进行性能预测和优化,提出一种GPU处理通用计算问题的性能模型.通过分析现代GPU并行架构和工作原理,将GPU的通用计算过程划分为数据获取、计算、输出和传输4个并列的阶段,结合程序特点和硬件规格对各阶段进行量化分析,完成性能预测.通过实验分析得出两大性能影响要素:计算强度和访问密度,并将其作为性能优化的基本准则.该模型被用于分析几种常见的图像和视频处理算法在GPU上的实现,包括高斯卷积、离散余弦变换和运动估计.实验结果表明,通过增大计算强度和访问密度,文中优化方案显著地降低了GPU上的执行时间,使得计算效率提升了4~10倍,充分说明了该模型在性能预测和优化方面的有效性.

GPU、GPGPU、图像处理、性能模型、DCT、卷积、运动估计

21

TP391(计算技术、计算机技术)

国家自然科学基金60573149

2009-11-03(万方平台首次上网日期,不代表论文的发表时间)

共8页

1219-1226

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

21

2009,21(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn