期刊专题

带边界约束的4片相邻三角Bézier曲面的近似合并

引用
基于Jacobi基的性质以及条件极值问题的求解,对4片相邻三角Bézier曲面进行了近似合并.首先利用Jacobi基的正交性及其与Bézier基之间的基转换矩阵,得到合并前后三角Bézier曲面距离函数的L2范数;为了保证合并前后三角Bézier曲面在边界C0连续以及角点处高阶连续,控制顶点必须满足一系列线性约束.为得到与原曲面距离最小的近似合并曲面,只需要利用Lagrange乘子法解决带线性约束的条件极值即可.合并三角Bézier曲面的控制顶点可用矩阵显式表达,且合并的逼近误差可由合并前后曲面距离函数的L1范数形式精确给出.通过提高合并三角Bézier曲面的次数,可减小合并误差、改善合并效果.数值实例表明,该方法计算简单、直接,适用性强,逼近效果佳.

Bézier曲线、三角Bézier曲面、近似合并、三角Jacobi基、边界约束

21

TP391(计算技术、计算机技术)

国家"九七三"重点基础研究发展计划项目2004CB719400;国家自然科学基金60873111

2009-11-03(万方平台首次上网日期,不代表论文的发表时间)

共7页

1047-1053

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

21

2009,21(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn