基于混合特征和多HMM融合的图像序列表情识别
当前多数图像序列的人脸表情识别方法仅提取图像的某一类特征,导致特征参数不能全面地反映脸部情感信息.提出一种基于混合特征和多HMM融合的图像序列表情识别方法.采用Gabor小波变换、二维离散余弦变换分别提取眼睛及眉毛区域、鼻子区域的纹理变化特征,对嘴巴区域则采用主动表观模型提取形状变化特征.对待测图像序列中的每个表情特征区域采用离散隐马尔可夫模型得出6种表情概率;然后根据在训练阶段得到的每个表情特征区域对每种表情的贡献权值进行加权融合,并选择融合后的表情概率最大者作为识别结果.实验结果表明,该方法综合了表情的纹理与形状变化,能够得到很好的识别效果,且处理速度快,适合于实时图像序列的表情识别.
表情识别、Gabor小波变换、二维离散余弦变换、主动表观模型、隐马尔可夫模型
20
TP391.41(计算技术、计算机技术)
国家自然科学基金60673190
2008-09-01(万方平台首次上网日期,不代表论文的发表时间)
共6页
900-905