10.3321/j.issn:1003-9775.2006.08.021
基于共生矩阵分析的自适应神经网络图像复原算法
为了保护图像中的细节信息,提出了一种基于共生矩阵聚类分析的自适应Hopfield神经网络图像复原算法.通过计算图像局部区域的共生矩阵提取其纹理特征,对共生矩阵非零元素进行聚类分析.根据聚类数量和各聚类之间的距离,提出了图像局部区域细节强度的定义及其计算方法.细节强度在准确地区分图像的平坦区域和细节区域基础上,通过非线性函数自适应地调整Hopfield网络的权系数矩阵,以使权系数适合图像的纹理特征,而且权系数的生成过程符合人的视觉特性.图像复原的迭代求解过程和神经网络权系数矩阵的更新过程交替进行.该算法能够在图像的平坦区域有效地抑制噪声,在包含细节的区域突出细节.对比实验结果显示,该算法获得的复原图像的信噪比明显提高,视觉效果明显改善.
图像复原、共生矩阵、分类、自适应神经网络、规整化
18
TP3(计算技术、计算机技术)
2006-09-11(万方平台首次上网日期,不代表论文的发表时间)
共7页
1205-1211