期刊专题

10.3321/j.issn:1003-9775.2006.08.021

基于共生矩阵分析的自适应神经网络图像复原算法

引用
为了保护图像中的细节信息,提出了一种基于共生矩阵聚类分析的自适应Hopfield神经网络图像复原算法.通过计算图像局部区域的共生矩阵提取其纹理特征,对共生矩阵非零元素进行聚类分析.根据聚类数量和各聚类之间的距离,提出了图像局部区域细节强度的定义及其计算方法.细节强度在准确地区分图像的平坦区域和细节区域基础上,通过非线性函数自适应地调整Hopfield网络的权系数矩阵,以使权系数适合图像的纹理特征,而且权系数的生成过程符合人的视觉特性.图像复原的迭代求解过程和神经网络权系数矩阵的更新过程交替进行.该算法能够在图像的平坦区域有效地抑制噪声,在包含细节的区域突出细节.对比实验结果显示,该算法获得的复原图像的信噪比明显提高,视觉效果明显改善.

图像复原、共生矩阵、分类、自适应神经网络、规整化

18

TP3(计算技术、计算机技术)

2006-09-11(万方平台首次上网日期,不代表论文的发表时间)

共7页

1205-1211

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

18

2006,18(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn