期刊专题

10.3969/j.issn.1007-4929.2013.03.009

基于小波神经网络方法的降水量预测研究

侯泽宇卢文喜陈社明
吉林大学;
引用
(0)
收藏
小波神经网络作为国际上新兴的一种数学建模分析方法,充分继承了小波变换良好的时频局部化性质及神经网络的自学习功能和极强的非线性能力等优点.降水量预测模型中神经网络选择BP网络,隐含层激发函数选取Morlet小波,并利用MATLAB编写预测程序,运用吉林西部地区白城、长岭、前郭3个测站1957-2010年的降水资料对模型进行训练、检验,进而预测三站未来十年的降水量.研究结果表明,小波神经网络预测模型对降水量的变化趋势预测准确,结构简单,收敛速度快,具有较高的实际应用价值,但其对于降水量具体值的预测精度有待于进一步提高;未来十年,吉林西部地区将处于降水量变化周期的丰水阶段,各相关部门应根据实际情况做好相应的准备.

小波神经网络、降水量预测、吉林西部、MATLAB、丰水阶段

P338.9(水文科学(水界物理学))

吉林省科技发展计划项目20080456

2016-05-17(万方平台首次上网日期,不代表论文的发表时间)

共4页

31-34

暂无封面信息
查看本期封面目录

节水灌溉

北大核心CSTPCD

1007-4929

42-1420/TV

2013,(3)

月卡
- 期刊畅读卡 -
¥68
季卡
- 期刊畅读卡 -
¥128
年卡
- 期刊畅读卡 -
¥199
年卡
- 超级文献套餐 -
¥499
查重
- 个人文献检测 -
快速入口
开通阅读并同意
《万方数据会员(个人)服务协议》

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn