期刊专题

10.13973/j.cnki.robot.170603

基于融合分层条件随机场的道路分割模型

引用
为了在道路检测中结合图像的多尺度特征以及点云的空间结构特征,使检测算法能有效地排除道路场景中的阴影、光线等干扰,本文提出一种基于融合分层条件随机场的图像和点云融合的道路分割模型.首先,利用Meanshift算法产生多个尺度的超像素分割,建立基于图像的多尺度分层条件随机场.将点云数据投影到图像平面,再建立基于点云的多尺度分层条件随机场.在条件随机场的像素层和点云层之间建立连接,构造多尺度的融合模型.然后,针对多尺度融合模型中图像层的每一层和点云层的每一层,分别提取对应尺度的图像特征或点云特征.每一层用梯度提升树算法根据提取的特征训练1个分类器,利用每一层的分类器得到对应层的数据项代价.最后,使用α扩张算法对融合模型进行联合优化求解.在KITTI Road数据集上的实验结果表明,该方法具有良好的道路检测性能.

分层条件随机场、融合、道路分割、多尺度特征、空间结构特征

40

TP242.6(自动化技术及设备)

国家自然科学基金61703209

2018-11-13(万方平台首次上网日期,不代表论文的发表时间)

共14页

803-816

暂无封面信息
查看本期封面目录

机器人

1002-0446

21-1137/TP

40

2018,40(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn