期刊专题

10.13973/j.cnki.robot.170702

基于级联卷积神经网络的机器人平面抓取位姿快速检测

引用
针对任意姿态的未知不规则物体,提出一种基于级联卷积神经网络的机器人平面抓取位姿快速检测方法.建立了一种位置-姿态由粗到细的级联式两阶段卷积神经网络模型,利用迁移学习机制在小规模数据集上训练模型,以R-FCN(基于区域的全卷积网络)模型为基础提取抓取位置候选框进行筛选及角度粗估计,并针对以往方法在姿态检测上的精度不足,提出一种Angle-Net模型来精细估计抓取角度.在Cornell数据集上的测试及机器人在线抓取实验结果表明,该方法能够对任意姿态、不同形状的不规则物体快速计算最优抓取点及姿态,其识别准确性和快速性相比以往方法有所提高,鲁棒性和稳定性强,且能够泛化适应未训练过的新物体.

平面抓取、级联卷积神经网络、两阶段机器人抓取检测、迁移学习

40

TP242(自动化技术及设备)

国家自然科学基金61573101

2018-11-13(万方平台首次上网日期,不代表论文的发表时间)

共9页

794-802

相关文献
评论
暂无封面信息
查看本期封面目录

机器人

1002-0446

21-1137/TP

40

2018,40(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn