期刊专题

10.3969/j.issn.1000-1158.2021.09.17

基于FCOS神经网络的制动主缸内槽缺陷检测方法

引用
针对主缸内槽缺陷检测存在干扰因素复杂、检测精度低等难点,提出了一种基于全卷积单阶段神经网络(FCOS)的主缸内槽缺陷检测算法.利用特征融合金字塔网络进行特征提取并逐像素预测,得到缺陷种类,实现凹槽缺陷的自动检测.实验结果表明,FCOS网络对制动主缸内槽砂眼、划痕、振刀纹缺陷检测的平均精度均值分别为85.2%、87.5%、90.1%,精确度分别为0.98、0.89、0.95.实验结果与Mask R-CNN网络和Faster R-CNN网络的实验结果进行对比,FCOS网络具有更高的准确率,学习时长大幅度缩短,且满足实时检测要求.

计量学;内槽缺陷检测;制动主缸;全卷积网络;FCOS;特征融合金字塔网络

42

TB973(计量学)

国家自然科学基金;国家自然科学基金重大科研仪器研制项目;浙江省先进制造技术重点实验室开发项目

2021-10-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

1225-1231

相关文献
评论
暂无封面信息
查看本期封面目录

计量学报

1000-1158

11-1864/TB

42

2021,42(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn