期刊专题

10.3969/j.issn.1000-1158.2017.02.14

基于奇异值分解和灰靶决策的车刀磨损状态判别

引用
针对随机噪声干扰车刀磨损振动信号时域特征提取,车刀磨损判别精度不高的问题,提出一种通过小波包变换和相关系数法提取车刀振动信号的磨损时域特征,采用奇异值分解对磨损时域特征进行去噪处理,去噪处理后获取磨损时域特征.选取与车刀磨损最相关的磨损特征作为参考特征序列,计算参考特征序列与其余磨损特征序列之间的相似关联度,对相似关联度归一化处理得到各磨损时域特征的权值,使用灰靶决策计算各磨损时域特征的综合测度,确定车刀磨损状态.实验结果表明:该方法可以有效地滤除随机噪声干扰.

计量学、车刀磨损、磨损状态判别、奇异值分解、灰靶决策、小波包变换

38

TP93

国家自然科学基金50975179;上海市教委科研创新项目11ZZ136;上海市科委科研计划项目13160502500

2017-05-16(万方平台首次上网日期,不代表论文的发表时间)

共4页

189-192

相关文献
评论
暂无封面信息
查看本期封面目录

计量学报

1000-1158

11-1864/TB

38

2017,38(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn