期刊专题

10.15923/j.cnki.cn22-1382/t.2017.4.06

基于CNN特征和标签信息融合的图像检索

引用
针对基于内容的图像检索(CBIR)中图像底层视觉特征与高层语义特征之间存在的"语义鸿沟"问题,提出了一种基于卷积神经网络(CNN)特征和标签信息融合的图像检索算法.首先使用CNN模型提取图像的CNN特征以及标签信息,然后使用余弦距离分别计算这两个特征的相似度,最后将这两个相似度进行加权融合,用作图像检索排序准则.在caltech101和caltech256数据集上分别进行实验,实验结果表明,所提算法加强了图像特征与高层语义的结合,大大提高了图像检索的查准率.

卷积神经网络、CNN特征、标签、图像检索

38

TP391(计算技术、计算机技术)

吉林省科技厅基金资助项目KJT2016-1

2017-11-13(万方平台首次上网日期,不代表论文的发表时间)

共8页

346-353

暂无封面信息
查看本期封面目录

长春工业大学学报

1674-1374

22-1382/T

38

2017,38(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn