期刊专题

10.13413/j.cnki.jdxblxb.2020198

基于生成对抗网络的单图像超分辨率重建

引用
针对当前卷积神经网络未能充分利用浅层特征信息,并难以捕获各特征通道间的依赖关系、丢失高频信息的问题,提出一种新的生成对抗网络用于图像超分辨率重建.首先,在生成器中引入WDSR-B残差块充分提取浅层特征信息;其次,将GCNet模块和像素注意力机制相结合加入到生成器和鉴别器中,学习各特征通道的重要程度和高频信息;最后,采用谱归一化代替不利于图像超分辨率的批规范化,减少计算开销,稳定训练.实验结果表明,该算法与其他经典算法相比能有效提高浅层特征信息的利用率,较好地重建出图像的细节信息和几何特征,提高超分辨率图像的质量.

图像超分辨率;生成对抗网络;注意力机制;残差网络

59

TP391(计算技术、计算机技术)

国家重大科技专项基金;黑龙江省自然科学基金

2021-12-01(万方平台首次上网日期,不代表论文的发表时间)

共8页

1491-1498

相关文献
评论
暂无封面信息
查看本期封面目录

吉林大学学报(理学版)

1671-5489

22-1340/O

59

2021,59(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn