期刊专题

10.13413/j.cnki.jdxblxb.2020190

基于密度信息熵的K-Means算法在客户细分中的应用

引用
为解决企业客户价值体现问题,提出一种T FA客户细分改进模型,以客户发展空间T、购买频次F和平均购买额A为指标,充分体现客户的价值和发展空间.首先,引入局部密度值ρ和信息熵H,改进K-means聚类算法,以优化传统K-means聚类方法初始聚类中心的选取问题;其次,通过搭建机器学习框架,对选取人工数据集及真实数据集进行聚类实验,验证模型的有效性.实验结果表明,该模型能有效分类客户,充分反映客户价值及其发展空间,并通过改进聚类算法提升了算法效率.

客户分类;客户发展空间;K-means算法;初始聚类中心;密度信息熵

59

TP391(计算技术、计算机技术)

贵州省科学技术基金批准号;黔科合L H字[2016]7023号和教育部高等教育司产学合作协同育人项目批准号;201801232042;201802341052

2021-09-26(万方平台首次上网日期,不代表论文的发表时间)

共7页

1245-1251

暂无封面信息
查看本期封面目录

吉林大学学报(理学版)

1671-5489

22-1340/O

59

2021,59(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn