期刊专题

10.13413/j.cnki.jdxblxb.2020233

一种增量式MinMax k-Means聚类算法

引用
针对MinMax k-means算法易产生空解、收敛速度慢和计算效率低的问题,提出一种增量式MinMax k-means聚类算法.该算法从给定的初始聚类个数开始,以固定步长递增式产生新的聚类中心,采用基于数据均衡的快速分裂方法产生增量聚类中心,从而避免了传统增量聚类中心选择中遍历数据、k-m eans聚类算法运行次数过多导致的大计算量问题.与MinMax k-means及相关算法的对比实验结果表明,该算法在计算效率和求解精度上均优于对比算法,有效改善了MinMax k-means聚类对初始化中心敏感和易产生空解的问题.

k均值聚类;增量式聚类;初始化;聚类中心

59

TP391.4(计算技术、计算机技术)

国家自然科学基金;吉林省科技发展计划项目;吉林省生态环境厅科技项目;吉林省教育厅科学技术研究项目;吉林省发展与改革委员会预算内基本建设资金计划项目

2021-09-26(万方平台首次上网日期,不代表论文的发表时间)

共7页

1205-1211

相关文献
评论
暂无封面信息
查看本期封面目录

吉林大学学报(理学版)

1671-5489

22-1340/O

59

2021,59(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn