期刊专题

10.13413/j.cnki.jdxblxb.2020176

基于灰狼算法优化深度学习网络的网络流量预测

引用
针对深度学习网络在网络流量预测建模过程中的参数优化难题,以改善网络流量预测结果为目标,提出一种基于改进灰狼算法优化深度学习网络的网络流量预测模型.首先,收集网络流量历史数据,并对数据进行相空间重构、归一化等预处理;其次,引入灰狼算法快速搜索到全局最优深度学习网络的相关参数,并根据最优参数对预处理后的网络流量历史数据进行学习,建立能挖掘网络流量历史数据变化规律的预测模型;最后,与其他算法优化深度学习网络的网络流量预测模型进行对比分析.实验结果表明,基于改进灰狼算法优化深度学习网络的网络流量预测精度超过90%,远高于其他对比模型,且预测建模过程的建模时间少于对比模型,可满足网络流量管理的高精度和实时性要求.

现代网络、改进灰狼算法、相空间重构、历史样本数据、深度学习网络、全局最优参数

59

TP273(自动化技术及设备)

河南省科技厅基础与前沿项目122300410373

2021-05-27(万方平台首次上网日期,不代表论文的发表时间)

共8页

619-626

暂无封面信息
查看本期封面目录

吉林大学学报(理学版)

1671-5489

22-1340/O

59

2021,59(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn