期刊专题

10.13413/j.cnki.jdxblxb.2020287

三角代数上的Jordan零点高阶ξ-Lie可导映射

引用
设U=Tri(A,M,B)是一个2-无扰的三角代数,{φn}n∈?是U上的一列线性映射.用代数分解方法证明:如果对任意n∈?,U,V∈U且U°V=0,有φn([U,V]ξ)=∑i+j=n[φi(U),φj(V)]ξ,ξ≠0,±1,则{φn}n∈?是一个高阶导子,其中[U,V]ξ=UV-ξVU为ξ-Lie积,U°V=UV+VU为Jordan积.并得到套代数上Jordan零点高阶ξ-Lie可导映射的具体形式.

三角代数、高阶ξ-Lie可导映射、ξ-Lie积

59

O177.1(数学分析)

国家自然科学基金11471199

2021-05-27(万方平台首次上网日期,不代表论文的发表时间)

共7页

475-481

相关文献
评论
暂无封面信息
查看本期封面目录

吉林大学学报(理学版)

1671-5489

22-1340/O

59

2021,59(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn