期刊专题

10.13413/j.cnki.jdxblxb.2021050

一类右端不连续的奇异摄动拟线性Robin边值问题的内部层解

引用
考虑一类具有Robin边值条件的右端不连续的奇摄动拟线性微分方程.首先,在给定条件下构造在间断曲线附近具有内部层的光滑解的渐近表达式;其次,基于缝接法证明该问题解的存在性,并给出余项估计;最后,用数值算例验证该方法的有效性.

奇摄动、渐近展开、内部层、Robin边值条件

59

O175.14(数学分析)

国家自然科学基金;上海市科委项目

2021-05-27(万方平台首次上网日期,不代表论文的发表时间)

共9页

451-459

暂无封面信息
查看本期封面目录

吉林大学学报(理学版)

1671-5489

22-1340/O

59

2021,59(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn