期刊专题

10.13413/j.cnki.jdxblxb.2020001

基于深度残差网络的车标识别

引用
针对车标识别准确率的问题,提出一种基于ResNet-18模型改进残差网络的车标识别算法.首先,利用残差网络并对其进行改进,使用改进的线性修正单元Leaky ReLU激活函数代替原激活函数;其次,调整传统的残差网络结构,将批量标准化和激活函数放在卷积层前,并减少网络参数以加速网络训练.实验结果表明,改进后的残差网络模型识别准确率达99.8%.

深度学习、残差网络、图像识别、车标识别

59

TP391.4(计算技术、计算机技术)

吉林省自然科学基金面上项目批准号:20180101229JC

2021-03-30(万方平台首次上网日期,不代表论文的发表时间)

共6页

319-324

相关文献
评论
暂无封面信息
查看本期封面目录

吉林大学学报(理学版)

1671-5489

22-1340/O

59

2021,59(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn