期刊专题

10.13413/j.cnki.jdxblxb.2018196

基于权重差异度的动态模糊聚类算法

引用
针对传统模糊聚类算法需提前设置参数和初始聚类中心,导致聚类结果不稳定的问题,提出一种基于权重差异度的动态模糊聚类算法.首先引入样本特征权重向量和样本间差异度的概念,对数据集分布情况进行描述,并采用新的评价指标获取候选聚类中心;然后根据最小差异度准则,对剩余样本点进行分类;最后结合Davies-Bouldin指数(DBI)评价准则对候选聚类中心做进一步筛选与合并.实验结果表明,该算法在不同测试数据集上的性能明显优于传统聚类算法,具有更高的自适应性和稳定性.

模糊聚类算法、权重向量、差异度、Davies-Bouldin指数、自适应

57

TP311.13(计算技术、计算机技术)

国家自然科学基金61373174

2019-06-10(万方平台首次上网日期,不代表论文的发表时间)

共9页

574-582

相关文献
评论
暂无封面信息
查看本期封面目录

吉林大学学报(理学版)

1671-5489

22-1340/O

57

2019,57(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn