期刊专题

10.13413/j.cnki.jdxblxb.2017.03.35

一种基于Seeds集和成对约束的主动半监督聚类算法

引用
针对半监督聚类算法中监督信息使用不充分,监督信息中信息含有量低的问题,提出一种结合主动学习的半监督聚类算法.首先结合使用数据的类别标记和成对约束信息,指导Kmeans聚类过程,设计出一种基于Seeds集和成对约束的半监督聚类算法SC-Kmeans;其次将主动学习算法引入到SC-Kmeans中,以尽量小的代价选取信息含有量更高的监督信息,提高SC-Kmeans算法的聚类精度;最后在UCI标准数据集上进行仿真实验.实验结果表明,该算法取得了较好的聚类效果,有效提高了聚类准确率.

半监督聚类、Kmeans算法、成对约束、Seeds集、主动学习

55

TP181(自动化基础理论)

国家自然科学基金重点项目61133011;吉林省科技发展计划重点科技攻关项目20150204005GX;长春市科技计划重大科技攻关项目14KG082

2017-06-14(万方平台首次上网日期,不代表论文的发表时间)

共9页

664-672

相关文献
评论
暂无封面信息
查看本期封面目录

吉林大学学报(理学版)

1671-5489

22-1340/O

55

2017,55(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn